www.esgc.org Follow us and live tweet #ESGC2018

Valuing Behind-the-Meter Energy Storage

Session: 1

Oliver Schmidt Imperial College London

Behind-the-meter storage is projected to dominate the stationary storage market

Market Size (Global)

The market for behind-the-meter storage will grow substantially

This is driven by the range of services behind-the-meter storage could provide

Source: Fitzgerald, G., Mandel, J., Morris, J., Touati, H., 2015. The Economics of Battery Energy Storage: how multi-use, customer-sited batteries deliver the most services and value to customers and the grid. Rocky Mountain Institute.

In theory, all energy storage technologies could be installed behind-the-meter

But, residential behind-the-meter electricity storage is not profitable

UK Case Study

Setting & Use Case

- Residential home with PV system
- PV self-consumption
- \rightarrow Retrofit battery

Model parameters

- Year: 2020
- Technology: 4 kWh li-ion battery
- Cost: £ 3,400 (all-in)
- Lifetime: 15 years
- Degradation: 1% pa (90% DoD)
- Power price: 14 p/kWh (exp: 4.9p/kWh)
- Discount rate: 5% (0% 10%)

We identify 6 policy barriers that prevent a positive residential business case...

Policy barriers

- 1. Lack of Time-of-Use tariffs
- 2. Lack of valuation for network services
- 3. Regulatory barriers for benefit-stacking

Valuation of services provided by residential storage

res

Energy

P O WERVAULT

- 4. High VAT rate for retrofit installations
- 5. Lack of subsidies
- 6. High financing cost

Financial support for residential storage

... and quantify the impact of resolving these barriers with policy measures

Quantifying policy measures

A combination of low cost policy measures enables profitable b-t-m storage by 2020

Combining policy measures

Policy action required to ensure valuation of all services

Behind-the-meter storage requires policy action for full valuation of its services

Conclusions

- 1. Market for behind-the-meter (b-t-m) storage will grow substantially
- 2. B-t-m storage can provide all customer, utility and network services
- 3. Profitable business cases stack multiple value streams
- 4. Policy action required to ensure valuation of all services

Oliver Schmidt

Email: o.schmidt15@imperial.ac.uk

Website: www.storage-lab.com

Imperial College London

The stacking of multiple revenue streams is seen as the path to profitability

Benefit-stacking

Profitable business cases stack multiple value streams

However, recent years have seen increasing dominance of one battery technology

Technologies – German Residential Market

Proportion of lead-acid / lithium-ion systems ≤ 30 kWh installed behind-the-meter:

Experience curve dataset for electricity storage technologies

Dataset

Competitive landscape for residential storage systems in Germany

Residential storage systems - Germany

Motivation for residential storage system driven by fear of

Sales drivers

To enable benefit-stacking, low-cost policy measures can be taken

Policy measures

- 1. Adjust technical standards to open markets for storage technologies (frequency response: reduce minimum bidding sizes, allow assets operating in dispersed fleets)
- 2. Amend competition regulation to allow combination of value streams (example: regulation in restructured markets like unbundling prohibits simultaneous revenues from generation and transmission)
- 3. Develop consistent legal definition of 'electricity storage' to stipulate that storage can serve as generation, transmission/distribution and consumption support simultaneously

Energy storage technologies contain a number of components

Technology components

Physical Energy Storage System

Selected Equipment & Cost Components

System Layer		i Layer	Component	
	SM	Storage Module	 Racking Frame/Cabinet Battery Management System ("BMS") Battery Modules 	
	BOS	Balance of System	 Container Monitors and Controls Thermal Management Fire Suppression 	
	PCS	Power Conversion System	 Inverter Protection (Switches, Breakers, etc.) Energy Management System ("EMS") 	
	EPC	Engineering, Procurement & Construction	 Project Management Engineering Studies/Permitting Site Preparation/Construction Foundation/Mounting Commissioning 	
Other (not included in analysis)			 SCADA Shipping Grid Integration Equipment Metering Land 	